Traveler:
Adrian Ares - University of Hawaii

Objectives:
1. Assist Costa Rica collaborators with alternative approaches for diagnosing P status in soils (organic and microbial P analysis) and plant tissues in peach palm stands.
2. Discuss and conduct verifications of allometric relationships for peach palm generated previously. Discuss biomass and nutrient accumulation of belowground tissues (“spider”), and its possible role in the P plant internal cycle of peach palm. Lead field work to obtain data on belowground biomass and nutrients in peach palm stands of different age.
3. Visit and discuss the field experiments at Los Diamantes and Altamira. Record symptoms of deficiency and differences in biomass accumulation and plant morphology between treatments.

Itinerary:

September 9 Travel from Honolulu to San José, Costa Rica
September 10, 11 At San José
September 12, 13 Field work in Guapiles area
September 14 to 18 At San José
September 19 Field work at Guapiles area
September 20 At San José
September 21 To Altamira
September 22 At San José
September 23 Travel from San José to Honolulu
September 24 Arrival to Honolulu

Report:
On arrival in Costa Rica, I met with Rafael Salas, Eloy Molina and Jimmy Boniche to discuss: (i) incoming field work to determine belowground biomass in peach palm stands for heart-of-palm, (ii) ongoing work on the P fertilization experiment in Altamira, and (iii) future on-farms experiments to compare predictions of NuMass against field data.

In the subsequent days, most of the time was devoted to field work consisting in excavating and towing out the belowground biomass component in four peach palm stands ranging in age from 2 to 21 years (Figure 2). The initial density of the stands was 5000 plants/ha. The belowground section of the plant (locally called ‘spider’) consists of a stem-like tissue and coarse
roots which spread radially from the tree vertical axis (Figure 3). Most of the spiders extended no
more than 40-50 cm in depth, and, laterally, seemed to cover most of the available space among
plants. The spiders were taken to San José, washed, and separated into coarse roots and stem-like
tissue. For the latter, a white-colored tissue called ‘interface’ was evident but it comprised a
relatively small volume. The washing and separation operation of the spider was very time-
consuming and it took several hours for one person to cut the coarse roots with a clipper and
remove the soil intermingled with the belowground tissues. Subsamples were taken to the lab for
dry weight determination and nutrient analysis.

The amount of belowground biomass in peach palm stands for heart-of-palm is quite large
and, to a certain extent, the belowground:aboveground ratio appears to increase with age from
about 1 in young stands to more than 2 in mature stands (Figure 1). According to previous data
on aboveground biomass (Molina et al., 2000), there would be as much as 12 Mg/ha of
belowground biomass in a mature peach palm stand. Phosphorus concentrations in belowground
tissues is remarkably high, and P contents may be as high as 30 kg/ha in mature stands. It does not
seem possible to determine a simple allometric relationship between aboveground and
belowground biomass for individual plants because the development of the aboveground parts is
controlled by management (harvest and control of shoot number) while the growth of the
belowground biomass appeared mainly restrained by competition among contiguous plants.
Aboveground biomass can be estimated, however, from allometric equations generated previously
for peach palm stands for heart-of-palm (Ares et al., 2000b). Then, belowground: aboveground
ratios could be used to estimate belowground biomass from aboveground biomass data at a given
age.

On September 18, I met with R. Salas, E. Molina, and J. Boniche from CIA, and Fred Cox
from North Carolina State University to discuss details of the greenhouse P fertilization study at
La Leona farm (See comments on the design of the experiment in F. Cox’s Report on trip to
Costa Rica and Ecuador-September 17-18). There was a discussion on potential benefits (good
correlation of solution P with P uptake) and problems (high variability, low measurable amounts)
of using soil solution P (extracted with 0.01 M CaCl₂ for instance) as an ancillary diagnostic
measure of P deficiency. The use of soil solution P in tree crops is being advocated in Australia
for nursery and field plants (Smethurst, 2000). In an experiment with peach palm in the Amazon
region, however, solution P collected with suction cups in the topsoil was too low and variable to
be a reliable indicator of soil P dynamics (Schroth et al., 2000). After the meeting, we examined
some “spiders” with F. Cox and discussed the amounts of nutrients sequestered in the
belowground biomass. These nutrients would have a low turnover rate and be an important
component of the nutrient budget in peach palm stands.

On September 21, J. Boniche, D. Alpizar, F. Cox and I visited the P experiment at Altamira.
The trial consists in six P doses from 0 to 47 kg P/ha yr. In general, there are no responses so far
in yield to P additions, and P concentrations in foliage (3rd and 5th leaf) and soil (at 0-5 and 5-20
cm depth extracted by the Modified Olsen and Mehlich-3 methods) did not correlate with P
additions (Ares et al., 2000a). A visual inspection of the plants under the different treatments
revealed that most of them looked similar. Photographs were taken on one representative plot for
each treatment and plant morphology was discussed.
During the first year of the experiment in Altamira, the P doses were split into two applications. For the second year, the annual P doses were applied in full in August 2000. Recent results indicated that a relative ample range in soil P at 0-5 cm was established after the fertilizer application but the range is relatively small for foliage P (Table 1). Also, soil sampling is being conducted in the alley in addition to the standard sampling at about 30-40 cm from the plant row. Future work will include determination of different soil organic P pools and microbial P, and sampling of other tissues in addition of foliage (i.e., petiole, stem and coarse roots). An increment borer will be used to sample stem and coarse roots. Some exploratory work in the four peach palm stand where spiders were excavated suggested that P concentration in petioles and coarse roots would be more related to available soil P than foliage P (Figure 4). Petiole is a standard sampling tissue for nutrient diagnosis in several annual crops such as potato (Meyer and Marcum, 1998), and also for tree crops such as papaya (Awada, 1976). In a field experiment on a Typical Histosol, petiole P concentration of papaya plants in a treatment receiving 1121 kg P/ha was three times the concentration in the control. Petiole P was also correlated to stem growth (Awada, 1976). Other research suggested that the ratio of petiole P concentration to leaf blade P concentration is a good index of P status in grapes (Janat et al., 1990). The proposed rationale is that under deficient conditions, P moves from older to younger tissues thought the petioles. When sufficient P is available, P accumulates in the petioles and the petiole:blade P ratio is usually equal or higher than 1. Under P stress, P would move from the petioles into the blades and the ratio would decrease.

Table 1. Soil and tissue P concentrations two months after fertilization (October 2000) in the Altamira experiment.

<table>
<thead>
<tr>
<th>P doses (ka ha⁻¹ yr⁻¹)</th>
<th>Soil P at 0-5 cm</th>
<th>Soil P at 5-20 cm</th>
<th>Tissue P concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Row</td>
<td>Alley</td>
<td>Row</td>
</tr>
<tr>
<td>0</td>
<td>10.5</td>
<td>4.7</td>
<td>7.7</td>
</tr>
<tr>
<td>3.9</td>
<td>7.4</td>
<td>5.6</td>
<td>6.2</td>
</tr>
<tr>
<td>7.8</td>
<td>7.6</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td>14.4</td>
<td>11.3</td>
<td>5.9</td>
<td>10.5</td>
</tr>
<tr>
<td>21.0</td>
<td>17.5</td>
<td>5.9</td>
<td>12.6</td>
</tr>
<tr>
<td>47.0</td>
<td>31.3</td>
<td>7.8</td>
<td>16.8</td>
</tr>
</tbody>
</table>
Figure 1. Belowground (‘spider):aboveground ratio in peach palm stands in the Atlantic Region of Costa Rica.
Figure 2. Towing to remove belowground biomass (‘spider’) in a mature peach palm stand in the Atlantic Region of Costa Rica.

Figure 3. View of belowground biomass (‘spider’) in a 21-year old peach palm stand in the Atlantic Region of Costa Rica.
Figure 4. Relation between extractable soil P (by the Modified Olsen method) and P concentration in different tissues.
Contacts:
Danilo Alpizar, RA, University of Costa Rica
Alfredo Alvarado, Soil Scientist, University of Costa Rica
Jimmy Boniche, RA, University of Costa Rica
Eduardo Fernandez, RA University of Costa Rica
Eloy Molina, Soil Scientist, University of Costa Rica
Rafael Salas, Director CIA, University of Costa Rica
Fred Cox, Professor, North Carolina State University

References: